Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.689
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Physiol Res ; 73(2): 189-203, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710051

RESUMO

This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.


Assuntos
Neuroacantocitose , Proteínas de Transporte Vesicular , Humanos , Animais , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Neuroacantocitose/metabolismo , Neuroacantocitose/genética , Neuroacantocitose/fisiopatologia , Neuroacantocitose/patologia , Mutação , Metabolismo dos Lipídeos/fisiologia , Metabolismo dos Lipídeos/genética
2.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724488

RESUMO

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Relacionadas à Autofagia , Autofagia , Progressão da Doença , Neoplasias Pulmonares , MicroRNAs , Material Particulado , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Material Particulado/efeitos adversos , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proliferação de Células/genética , Células A549 , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transporte Vesicular
3.
Sci Rep ; 14(1): 10160, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698045

RESUMO

How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Proteínas de Transporte , Regulador de Condutância Transmembrana em Fibrose Cística , Transporte Proteico , Proteínas de Transporte Vesicular , Humanos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Ubiquitinação , Proteólise
4.
Biomolecules ; 14(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38672477

RESUMO

Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFßRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFß signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFßRI associated with lower responsiveness to the manipulation of TGFß/TGFßRI pathway and the regulation of pro-tumorigenic properties. Active TGFßRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1ß, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.


Assuntos
Fibroblastos , Glioblastoma , Proteoglicanas , Receptores de Interleucina-8B , Transdução de Sinais , Proteínas de Transporte Vesicular , Humanos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Proteoglicanas/metabolismo , Proteoglicanas/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Comunicação Parácrina , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Células Estromais/metabolismo , Células Estromais/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia
5.
Proc Natl Acad Sci U S A ; 121(18): e2317760121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652741

RESUMO

The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we identified that decorin down-regulated a cluster of tumor-associated genes involved in lymphatic vessel (LV) development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of LVs, were markedly suppressed at both the mRNA and protein levels, and this suppression correlated with a significant reduction in tumor LVs. We further identified that soluble decorin, but not its homologous proteoglycan biglycan, inhibited LV sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with vascular endothelial growth factor receptor 3 (VEGFR3), the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we identified that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a biological factor with antilymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.


Assuntos
Decorina , Linfangiogênese , Decorina/metabolismo , Decorina/genética , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Linhagem Celular Tumoral , Progressão da Doença , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Regulação Neoplásica da Expressão Gênica
6.
Acta Neuropathol Commun ; 12(1): 47, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532508

RESUMO

Sturge-Weber syndrome (SWS), a neurocutaneous disorder, is characterized by capillary malformations (CM) in the skin, brain, and eyes. Patients may suffer from seizures, strokes, and glaucoma, and only symptomatic treatment is available. CM are comprised of enlarged vessels with endothelial cells (ECs) and disorganized mural cells. Our recent finding indicated that the R183Q mutation in ECs leads to heightened signaling through phospholipase Cß3 and protein kinase C, leading to increased angiopoietin-2 (ANGPT2). Furthermore, knockdown of ANGPT2, a crucial mediator of pro-angiogenic signaling, inflammation, and vascular remodeling, in EC-R183Q rescued the enlarged vessel phenotype in vivo. This prompted us to look closer at the microenvironment in CM-affected vascular beds. We analyzed multiple brain histological sections from patients with GNAQ-R183Q CM and found enlarged vessels devoid of mural cells along with increased macrophage-like cells co-expressing MRC1 (CD206, a mannose receptor), CD163 (a scavenger receptor and marker of the monocyte/macrophage lineage), CD68 (a pan macrophage marker), and LYVE1 (a lymphatic marker expressed by some macrophages). These macrophages were not found in non-SWS control brain sections. To investigate the mechanism of increased macrophages in the perivascular environment, we examined THP1 (monocytic/macrophage cell line) cell adhesion to EC-R183Q versus EC-WT under static and laminar flow conditions. First, we observed increased THP1 cell adhesion to EC-R183Q compared to EC-WT under static conditions. Next, using live cell imaging, we found THP1 cell adhesion to EC-R183Q was dramatically increased under laminar flow conditions and could be inhibited by anti-ICAM1. ICAM1, an endothelial cell adhesion molecule required for leukocyte adhesion, was strongly expressed in the endothelium in SWS brain histological sections, suggesting a mechanism for recruitment of macrophages. In conclusion, our findings demonstrate that macrophages are an important component of the perivascular environment in CM suggesting they may contribute to the CM formation and SWS disease progression.


Assuntos
Capilares/anormalidades , Síndrome de Sturge-Weber , Malformações Vasculares , Humanos , Síndrome de Sturge-Weber/genética , Síndrome de Sturge-Weber/patologia , Síndrome de Sturge-Weber/terapia , Células Endoteliais/metabolismo , Capilares/patologia , Macrófagos/metabolismo , Microambiente Tumoral , Proteínas de Transporte Vesicular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
7.
Mol Biol Rep ; 51(1): 427, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498238

RESUMO

BACKGROUND: Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS: The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS: Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS: Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ácido Valproico/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Supressora de Tumor p53 , Resistência a Múltiplos Medicamentos/genética , Apoptose , Linhagem Celular Tumoral , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/farmacologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/farmacologia , Proteínas de Transporte Vesicular/uso terapêutico
8.
Mol Carcinog ; 63(5): 803-816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411267

RESUMO

Ovarian cancer is a major cause of death among cancer patients. Recent research has shown that the transmembrane emp24 domain (TMED) protein family plays a role in the progression of various types of cancer. In this study, we investigated the expression of TMED3 in ovarian cancer tumors compared to nontumor tissues using immunohistochemical staining. We found that TMED3 was overexpressed in ovarian cancer tumors, and its high expression was associated with poor disease-free and overall survival. To understand the functional implications of TMED3 overexpression in ovarian cancer, we conducted experiments to knockdown TMED3 using short hairpin RNA (shRNA). We observed that TMED3 knockdown resulted in reduced cell viability and migration, as well as increased cell apoptosis. Additionally, in subcutaneous xenograft models in BALB-c nude mice, TMED3 knockdown inhibited tumor growth. Further investigation revealed that SMAD family member 2 (SMAD2) was a downstream target of TMED3, driving ovarian cancer progression. TMED3 stabilized SMAD2 by inhibiting the E3 ligase NEDD4-mediated ubiquitination of SMAD2. To confirm the importance of SMAD2 in TMED3-mediated ovarian cancer, we performed functional rescue experiments and found that SMAD2 played a critical role in this process. Moreover, we discovered that the PI3K-AKT pathway was involved in the promoting effects of TMED3 overexpression on ovarian cancer cells. Overall, our study identifies TMED3 as a prognostic indicator and tumor promoter in ovarian cancer. Its function is likely mediated through the regulation of the SMAD2 and PI3K-AKT signaling pathway. These findings contribute to our understanding of the molecular mechanisms underlying ovarian cancer progression and provide potential targets for therapeutic intervention.


Assuntos
Neoplasias Ovarianas , Proteínas de Transporte Vesicular , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad2/farmacologia , Ubiquitinação , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo
9.
Cell Mol Life Sci ; 81(1): 103, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409392

RESUMO

VPS35 plays a key role in neurodegenerative processes in Alzheimer's disease and Parkinson's disease (PD). Many genetic studies have shown a close relationship between autophagy and PD pathophysiology, and specifically, the PD-causing D620N mutation in VPS35 has been shown to impair autophagy. However, the molecular mechanisms underlying neuronal cell death and impaired autophagy in PD are debated. Notably, increasing evidence suggests that Rab9-dependent "alternative" autophagy, which is driven by a different molecular mechanism that driving ATG5-dependent "conventional" autophagy, also contributes to neurodegenerative process. In this study, we investigated the relationship between alternative autophagy and VPS35 D620N mutant-related PD pathogenesis. We isolated iPSCs from the blood mononuclear cell population of two PD patients carrying the VPS35 D620N mutant. In addition, we used CRISPR-Cas9 to generate SH-SY5Y cells carrying the D620N variant of VPS35. We first revealed that the number of autophagic vacuoles was significantly decreased in ATG5-knockout Mouse Embryonic Fibroblast or ATG5-knockdown patient-derived dopaminergic neurons carrying the VPS35 D620N mutant compared with that of the wild type VPS35 control cells. Furthermore, estrogen, which activates alternative autophagy pathways, increased the number of autophagic vacuoles in ATG5-knockdown VPS35 D620N mutant dopaminergic neurons. Estrogen induces Rab9 phosphorylation, mediated through Ulk1 phosphorylation, ultimately regulating alternative autophagy. Moreover, estrogen reduced the apoptosis rate of VPS35 D620N neurons, and this effect of estrogen was diminished under alternative autophagy knockdown conditions. In conclusion, alternative autophagy might be important for maintaining neuronal homeostasis and may be associated with the neuroprotective effect of estrogen in PD with VPS35 D620N.


Assuntos
Neuroblastoma , Doença de Parkinson , Animais , Humanos , Camundongos , Autofagia/genética , Neurônios Dopaminérgicos/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Fibroblastos/metabolismo , Mutação/genética , Neuroblastoma/metabolismo , Doença de Parkinson/patologia , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
10.
Genes (Basel) ; 15(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275611

RESUMO

Cranio-lenticulo-sutural dysplasia (CLSD, OMIM #607812) is a rare genetic condition characterized by late-closing fontanels, skeletal defects, dysmorphisms, and congenital cataracts that are caused by bi-allelic or monoallelic variants in the SEC23A gene. Autosomal recessive inheritance (AR-CLSD) has been extensively documented in several cases with homozygous or compound heterozygous variants in SEC23A, whereas autosomal dominant inheritance (AD-CLSD) involving heterozygous inherited variants has been reported just in three patients. The SEC23A gene encodes for one of the main components of a protein coat complex known as coat-protein-complex II (COPII), responsible for the generation of the envelope of the vesicles exported from the endoplasmic reticulum (ER) toward the Golgi complex (GC). AR-CLSD and AD-CLSD exhibit common features, although each form also presents distinctive and peculiar characteristics. Herein, we describe a rare case of a 10-year-old boy with a history of an anterior fontanel that closed only at the age of 9. The patient presents with short proportionate stature, low weight, and neurological impairment, including intellectual disability, global developmental delay, abnormal coordination, dystonia, and motor tics, along with dysmorphisms such as a wide anterior fontanel, hypertelorism, frontal bossing, broad nose, high-arched palate, and micrognathia. Trio clinical exome was performed, and a de novo heterozygous missense variant in SEC23A (p.Arg716Cys) was identified. This is the first reported case of CLSD caused by a de novo heterozygous missense variant in SEC23A presenting specific neurological manifestations never described before. For the first time, we have conducted a comprehensive phenotype-genotype correlation using data from our patient and the eight most well-documented cases in the literature. Our work has allowed us to identify the main specific and characteristic signs of both forms of CLSD (AR-CLSD, AD CLSD), offering valuable insights that can guide physicians in the diagnostic process. Notably, detailed descriptions of neurological features such as intellectual disability, global developmental delay, and motor impairment have not been documented before. Furthermore, our literature overview is crucial in the current landscape of CLSD due to the absence of guidelines for the clinical diagnosis and proper follow-up of these patients, especially during childhood.


Assuntos
Deficiência Intelectual , Proteínas de Transporte Vesicular , Masculino , Humanos , Criança , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Mutação de Sentido Incorreto , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo
11.
Cell Oncol (Dordr) ; 47(1): 129-140, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37751067

RESUMO

PURPOSE: The bone marrow niche plays an important role in leukemia development. However, the contributions of different niche components to leukemia development and their underlying mechanisms remain largely unclear. METHOD: Cre/LoxP-based conditional knockout technology was used to delete VPS33B or ANGPTL2 gene in niche cells. Murine B-ALL model was established by overexpressing the N-Myc oncogene in hematopoietic stem progenitor cells. The frequency of leukemia cells and immunophenotypic B220+ CD43+ LICs was detected by flow cytometry. SEVs was isolated by sequential centrifugation and mass spectrometry was performed to analyze the different components of SEVs. Immunoprecipitation and western blot were used to measure the interaction of VPS33B and ANGPTL2. RESULTS: Here, we showed that specific knockout of vascular protein sorting 33b (Vps33b) in endothelial cells (ECs), but not megakaryocytes or mesenchymal stem cells, resulted in a significant decrease in the secretion of small extracellular vesicles (SEVs) and a delay in the development of B-cell lymphoblastic leukemia (B-ALL). Vps33b knockdown endothelial cells contained much lower levels of SEVs that contained angiopoietin-like protein 2 (ANGPTL2) than the control cells. Importantly, conditional knockout of Angptl2 in ECs significantly delayed B-ALL progression. Moreover, C-terminal region of ANGPTL2 (aa247-471) could directly interact with Sec1-like domain 1 of VPS33B (aa1-aa146). We further demonstrated that the point mutations R399H and G402S in ANGPTL2 led to a dramatic decrease in the secretion of ANGPTL2-SEVs. We also showed that wild-type ANGPTL2-containing SEVs, but not mutant ANGPTL2-containing SEVs, significantly enhanced B-ALL development. CONCLUSION: In summary, our findings indicate that the secretion of ANGPTL2-containing SEVs in ECs sustains the leukemogenic activities of B-ALL cells, which is fine-tuned by the direct interaction of VPS33B and ANGPTL2. These findings reveal that niche-specific SEVs play an important role in B-ALL development.


Assuntos
Vesículas Extracelulares , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Proteína 2 Semelhante a Angiopoietina , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
12.
Plant Physiol Biochem ; 206: 108268, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091933

RESUMO

Cadmium (Cd) is an environmental toxicant that accumulates in grains, which greatly increases the risk of human exposure to Cd via food chain. The exocytosis of Cd is one of the essential detoxification mechanisms in plants. OsEXO70s, which facilitate the fusion of secretory vesicles and target membranes, has undergone significant expansion in rice. Here, we uncovered 40 OsEXO70 genes characterized by genome-wide profiling and focused on the potential functions of OsEXO70s, especially OsEXO70FX1, in Cd stress. Overexpression of OsEXO70FX1 enhanced both diamide and Cd tolerances in Schizosaccharomyces pombe (S. pombe), and in Arabidopsis resulted in 11% more seedlings survival rate and about 70% longer primary roots under Cd treatment compared with WT (empty vector). Meanwhile, Cd treatment upregulated the expression levels of some exocyst subunits in overexpression lines. Trichomes isolated from overexpression lines were observed to accumulate more Cd. Also, reactive oxygen species (ROS) induced by Cd stress reflected less sensitivity of OsEXO70FX1 overexpression lines to Cd stress, which was evidenced in the Cd determination assay. These results provide the fundament to future research on rice EXO70 family and suggest that it may have evolved a specialized role in response to Cd stress.


Assuntos
Arabidopsis , Oryza , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Arabidopsis/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
13.
Oncogene ; 43(2): 106-122, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950040

RESUMO

VPS35 is a key subunit of the retromer complex responsible for recognising cytosolic retrieval signals in cargo and is involved in neurodegenerative disease and tumour progression. However, the function and molecular mechanism of VPS35 in gastric cancer (GC) remains largely unknown. Here, we demonstrated that VPS35 was significantly upregulated in GC, which was associated with poor survival. VPS35 promoted GC cell proliferation and metastasis both in vitro and in vivo. Mechanistically, VPS35 activated FAK-SRC kinases through integrin-mediated outside-in signalling, leading to the activation of YAP and subsequent IL-6 expression induction in tumour cells. What's more, combined mass spectrometry analysis of MGC-803 cell and bioinformatic analysis, we found that phosphorylation of VPS35 was enhanced in GC cells, and phosphorylated VPS35 has enhanced interaction with ITGB3. VPS35 interacted with ITGB3 and affected the recycling of ITGB3 in GC cells. Gain- and loss-of-function experiments revealed that VPS35 promoted tumour proliferation and metastasis via the IL-6/STAT3 pathway. Interestingly, we also found that STAT3 directly bound to the VPS35 promoter and increased VPS35 transcription, thereby establishing a positive regulatory feedback loop. In addition, we demonstrated that VPS35 knockdown sensitised GC cells to 5-FU and cisplatin. These findings provide evidence that VPS35 promotes tumour proliferation and metastasis, and highlight the potential of targeting VPS35- and IL-6/STAT3-mediated tumour interactions as promising therapeutic strategies for GC.


Assuntos
Doenças Neurodegenerativas , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Integrinas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Sinalização YAP , Quinases da Família src
14.
J Cell Physiol ; 239(3): e31068, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37357526

RESUMO

N6-methyladenosine (m6 A) is one of the main epitranscriptomic modifications that accelerates the progression of malignant tumors by modifying RNA. Methyltransferase-like 16 (METTL16) is a newly identified methyltransferase that has been found to play an important oncogenic role in a few malignancies; however, its function in osteosarcoma (OS) remains unclear. In this study, METTL16 was found to be upregulated in OS tissues, and associated with poor prognosis in OS patients. Functionally, METTL16 substantially promoted OS cell proliferation, migration, and invasion in vitro and OS growth in vivo. Mechanistically, vacuolar protein sorting protein 33b (VPS33B) was identified as the downstream target of METTL16, which induced m6 A modification of VPS33B and impaired the stability of the VPS33B transcript, thereby degrading VPS33B. In addition, VPS33B was found to be downregulated in OS tissues, VPS33B knockdown markedly attenuated shMETTL16-mediated inhibition on OS progression. Finally, METTL16/VPS33B might facilitate OS progression through PI3K/AKT pathway. In summary, this study revealed an important role for the METTL16-mediated m6 A modification in OS progression, implying it as a promising target for OS treatment.


Assuntos
Adenosina , Neoplasias Ósseas , Metiltransferases , Osteossarcoma , Fosfatidilinositol 3-Quinases , Proteínas de Transporte Vesicular , Humanos , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Linhagem Celular Tumoral
15.
Biol Reprod ; 110(3): 536-547, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38011671

RESUMO

Recurrent implantation failure (RIF) patients exhibit poor endometrial receptivity and abnormal decidualization with reduced effectiveness and exposure to progesterone, which is an intractable clinical problem. However, the associated molecular mechanisms remain elusive. We found that EH domain containing 1 (EHD1) expression was abnormally elevated in RIF and linked to aberrant endometrial decidualization. Here we show that EHD1 overexpressed in human endometrial stromal cells significantly inhibited progesterone receptor (PGR) transcriptional activity and the responsiveness to progesterone. No significant changes were observed in PGR mRNA levels, while a significant decrease in progesterone receptor B (PRB) protein level. Indeed, EHD1 binds to the PRB protein, with the K388 site crucial for this interaction. Overexpression of EHD1 promotes the SUMOylation and ubiquitination of PRB, leading to the degradation of the PRB protein. Supplementation with the de-SUMOylated protease SENP1 ameliorated EHD1-repressed PRB transcriptional activity. To establish a functional link between EHD1 and the PGR signalling pathway, sg-EHD1 were utilized to suppress EHD1 expression in HESCs from RIF patients. A significant increase in the expression of prolactin and insulin-like growth factor-binding protein 1 was detected by interfering with the EHD1. In conclusion, we demonstrated that abnormally high expression of EHD1 in endometrial stromal cells attenuated the activity of PRB associated with progesterone resistance in a subset of women with RIF.


Assuntos
Decídua , Progesterona , Humanos , Feminino , Progesterona/farmacologia , Progesterona/metabolismo , Decídua/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Endométrio/metabolismo , Células Estromais/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Cisteína Endopeptidases
16.
Int J Med Sci ; 20(13): 1732-1743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928880

RESUMO

The members of the transmembrane emp24 domain-containing protein (TMED) family are summarized in human as four subfamilies, α (TMED 4, 9), ß (TMED 2), γ (TMED1, 3, 5, 6, 7) and δ (TMED 10), with a total of nine members, which are important regulators of intracellular protein transport and are involved in normal embryonic development, as well as in the pathogenic processes of many human diseases. Here we systematically review the composition, structure and function of TMED family members, and describe the progress of TMED family in human diseases, including malignancies (head and neck tumors, lung cancer, breast cancer, ovarian cancer, endometrial cancer, gastrointestinal tumors, urological tumors, osteosarcomas, etc.), immune responses, diabetes, neurodegenerative diseases, and nonalcoholic fatty liver disease, dilated cardiomyopathy, mucin 1 nephropathy (MKD), and desiccation syndrome (SS). Finally, we discuss and prospect the potential of TMED for disease prognosis prediction and therapeutic targeting, with a view to laying the foundation for therapeutic research based on TMED family causative genes.


Assuntos
Proteínas de Membrana , Hepatopatia Gordurosa não Alcoólica , Gravidez , Feminino , Humanos , Proteínas de Membrana/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
17.
Biochem Biophys Res Commun ; 687: 149196, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37939504

RESUMO

Brain gliomas are difficult in the field of tumor therapy because of their high recurrence rate, high mortality rate, and low selectivity of therapeutic agents. The efficacy of Traditional Chinese Medicine (TCM) in the treatment for tumours has been widely recognized. Here, three Chinese herb related molecules, namely Catechins, Caudatin and Cucurbitacin-I, were screened by bioinformatic means, and were found to inhibit the proliferation of glioblastoma T98G cells using Colony-forming and CCK-8 assays. Notably, the simultaneous use of all three molecules could more significantly inhibit the proliferation of glioma cells. Consistent with this, temozolomide, each in the combination with three molecules, could synergistically inhibit the proliferation of T98G cells. Results of qPCR assay was also showed that this inhibition was through the activation of the KDELR2-mediated endoplasmic reticulum stress (ER) pathway. Molecular docking experiments further revealed that Catechins, Caudatin and Cucurbitacin-I could activate ER stress might by targeting KDELR2. Taken together, these results suggest that these herbal molecules have the potential to inhibit the growth of glioma cells and could provide a reference for clinical therapeutic drug selection.


Assuntos
Antineoplásicos , Catequina , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Catequina/farmacologia , Cucurbitacinas/farmacologia , Cucurbitacinas/uso terapêutico , Simulação de Acoplamento Molecular , Glioma/patologia , Antineoplásicos/farmacologia , Proliferação de Células , Estresse do Retículo Endoplasmático , Linhagem Celular Tumoral , Apoptose , Proteínas de Transporte Vesicular/metabolismo
18.
Dev Cell ; 58(19): 1950-1966.e8, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37816329

RESUMO

Newly synthesized proteins in the endoplasmic reticulum (ER) are sorted by coat protein complex II (COPII) at the ER exit site en route to the Golgi. Under cellular stresses, COPII proteins become targets of regulation to control the transport. Here, we show that the COPII outer coat proteins Sec31 and Sec13 are selectively sequestered into the biomolecular condensate of SCOTIN/SHISA-5, which interferes with COPII vesicle formation and inhibits ER-to-Golgi transport. SCOTIN is an ER transmembrane protein with a cytosolic intrinsically disordered region (IDR), which is required and essential for the formation of condensates. Upon IFN-γ stimulation, which is a cellular condition that induces SCOTIN expression and condensation, ER-to-Golgi transport was inhibited in a SCOTIN-dependent manner. Furthermore, cancer-associated mutations of SCOTIN perturb its ability to form condensates and control transport. Together, we propose that SCOTIN impedes the ER-to-Golgi transport through its ability to form biomolecular condensates at the ER membrane.


Assuntos
Retículo Endoplasmático , Proteínas de Transporte Vesicular , Proteínas de Transporte Vesicular/metabolismo , Transporte Biológico , Transporte Proteico/fisiologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo
19.
Curr Med Sci ; 43(5): 1023-1032, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37615927

RESUMO

OBJECTIVE: Cisplatin is the first-line treatment for breast cancer, but it faces challenges of drug resistance. This study investigated new molecular mechanisms underlying cisplatin resistance in breast cancer. METHODS: We analyzed sequencing data from the TCGA database to identify potential associations between transmembrane emp24 protein transport domain containing 2 (TMED2) and breast cancer. Western blotting, real-time PCR, CCK-8, and TUNEL assays were used to measure the effects and molecular mechanism of TMED2 on cisplatin resistance in MCF-7 and MDA-MB-231 cell lines. RESULTS: TMED2 was overexpressed in breast cancer and associated with poor prognosis. TMED2 increased cisplatin resistance in breast cancer cells in vitro via promoting ubiquitination of Kelch-like ECH-associated protein 1 (KEAP1), relieving inhibition of KEAP1 on nuclear factor erythroid 2-related factor 2 (Nrf2), and increasing expression of downstream drug resistance related genes, such as heme oxygenase 1 (HO-1) and NAD (P) H quinone oxidoreductase 1 (NQO1). CONCLUSION: We identified a new molecular mechanism by which TMED2 affects cisplatin resistance in breast cancer. Our results provide theoretical guidance for future clinical applications.


Assuntos
Neoplasias da Mama , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
20.
Autophagy ; 19(12): 3248-3250, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37584544

RESUMO

SnRK1 (SNF1-related protein kinase 1) is a plant ortholog of yeast Snf1 and mammalian adenosine monophosphate-activated protein kinase (AMPK) that acts as a positive regulator of macroautophagy/autophagy. However, whether and how the autophagy pathway modulates SnRK1 activity remains elusive. Recently, we identified a clade of plant-specific FLZ (FCS-like zinc finger) proteins as novel ATG8 (autophagy-related 8)-interacting partners in Arabidopsis thaliana. These AtFLZs, which mainly localize on the surface of mitochondria, can inhibit SnRK1 signaling by repressing the T-loop phosphorylation of its catalytic α subunits, thereby negatively regulating carbon starvation-induced autophagy and plant tolerance to energy deprivation. Upon energy starvation, autophagy is activated to mediate the degradation of these AtFLZs, thus relieving their repression of SnRK1. More importantly, the ATG8-FLZ-SnRK1 regulatory axis appears to be functionally conserved during seed plant evolution. These findings highlight the positive role of autophagy in SnRK1 signaling activation under energy-limiting conditions in plants.Abbreviations: ADS, AIMs docking site; AIM, ATG8-interacting motif; AMPK, adenosine monophosphate-activated protein kinase; ATG, autophagy-related; ESCRT, endosomal sorting complexes required for transport; FLZ, FCS-like zinc finger protein; FREE1, FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1; RAPTOR, REGULATORY-ASSOCIATED PROTEIN OF TOR; Snf1, SUCROSE NON-FERMENTING 1; SnRK1, SNF1-related kinase 1; TOR, TARGET OF RAPAMYCIN.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Retroalimentação , Autofagia , Arabidopsis/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Monofosfato de Adenosina , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA